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THE CASE 

There is established the equivalence of methods of computing the effective 
elastic moduli for potential and bivortical tensor fields. It is shown that in these 

cases the exact solutions agree and the agreement of the solutions found in a 
singular approximation is possible only under definite constraints imposed on the 

parameters of the comparison body. 

1, It is known [l] that any symmetric tensor of the second rank can be decomposed 
into potential and bivortical components. The potential component of elastic fields is 

found from the equations 

div cr = -f, Rot 8 = 0, (J = he (Rot = rot $ rot) (1.1) 

where o, E are the stress and strain tensors, 3L is the tensor of the elastic moduli, f is 

the vector of the volume density of the external forces. (Here and throughout wherever 
possible, the tensor indices are omitted). In turn, the bivortical component is determined 
by using the equations 

Rot e = -_rl, div u = 0, u = he (1.2) 

where 11 is the tensor of incompatibility which describes the distribution of the internal 

stress sources. 
Equations (1.1) and (1.2) are used below to compute the effective elastic moduli and 

the elastic fields of inhomogeneous media for which the material characteristics (the 

density, elastic moduli, compliances, etc. ) are random fields, and f, q are regular func- 
tions of the coordinates. 

Let us first examine potential fields. Together with the field 3L (r) we introduce the 

homogeneous comparison field a,. The displacement fields u and u, corresponding to 

the tensors 31 and h, satisfy the equations 

Lu = -f, L = div 3L def, u 1s = u. (1.3) 

Lu, = -f, JL = div h, def, uC IS = u. (1.4) 

Here 8 is the surface bounding the medium, u. is the value of the displacement on the 

boundary, and because of potentiality the strains e, e, are connected with the displace- 
ments u, u,by the relations e = def u, e, = def u,. A medium for which the solu- 
tion of (1.4) is known is selected as the comparison medium. 

The problem is to find the strain 8 and the tensor of the effective elastic moduli h, 
defining the mean strain <a> c def <u> by the equation 

L,<u) = -f, L, = div l.* def, <u> j5. = u. (1.5) 

where the angular brackets denote the statistical average. 
It can be shown [Z] the the equalities 
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<a> = E, = def uo, f = 0 (L6) 
hold in the absence of external forces, and the average taken over the volume agrees with 
the statistical average. 

Denoting the excess fields relative to the comparison body and the operators by primes, 
we have from (1.3) and (1.4) 

Led = --Ltu, UC 1s = 0 (L’ = L - Lo, u’ = u - 7.4,) (1.7) 
Let us introduce the Green’s tensor of the operator L, which satisfies the equation 

L,G = -26, G 1s = 0 

where I is the unit tensor of the second rank, and 6 is the delta function. 

We then have from (1.7) 
u = UC + G * L’u (1.8) 

where the asterisk denotes the integral convolution operation. The integral equation 

(1.8) permits expressing the field u in terms of the known field u,. Letting the operator 
def act on both sides of (1.8), we obtain an equation for the strain 

e = e, + Qh’e, Q = def G * div CL% 

Solving (1.9) for e, we find 
e = ae,, a = (1 - Qh.‘)-f 

In general, the operator a has the meaning of an infinite series 

a= j&J=, Y=Qh’ 
0 

which is obtained in solving (1.9) by the method of iteration, 

We now eliminate the field % from (1. lo), To do this, we take its average andexpress 
e, in terms of <a> 

e, = (a)-r(e> (1.11) 

Substituting (1.11) into (1.10) yields 

e = A(e), A = da>-” 

The operator A also has a representation in the form of a series 

(1.12) 

A=$Y”, Y = ty, @SF-(P) (1.13) 

The solution (1.12) permits finding the tensor of the effective elastic moduli in the form 

h, = <AA), <A> = I, (CT) = h,(e) (1.24) 

The expressions (1.12) and (1.14) therefore solve the problem about describing an inho - 
mogeneous deformable medium completely. However, the exact solutions found in the 
form of operator series are not of formal nature only in rare cases, This is related to the 
fact that available information about the statistical properties of an arbitrary inhomoge- 
neous medium is insufficient for the computation of h, and e according to (I. 12) and 
(1.14). Moreover, the mathematical difficulties of such a computation are still quite 
great. In this connection it is often necessary to limit oneself to the consideration of ap- 
proximate solutions [3 - 7-J. One of them is the singular approximation (the 6’ - appro- 

ximation) [5 - 71 based on extracting the singular component of the Green’s tensor G, 
and therefore the operator Q as well. In the general case, the Green’s tensor G can be 
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represented as the ,difference between two terms G = G, - G,, one of which G, 
corresponds to an unbounded medium, while the other takes account of the presence of 
the surface bounding the medium under consideration. Singularities of 6-function type 

originated in taking the second derivative of the tensor 6’. Introducing the notation 

C6, 71 (def divT)SG, = g6, divTG * ss G * div (1.15) 

(def divT)fG * F = hF 

where s and f denote the singular and formal parts, and T the transpose, we rewrite 

(1.12) in the form 
A = (I - gh’)-‘B ((1 - gh’)-%)-I 

R = (I - hh’)-l ((I - hh’)-I)-’ = ; (thh’)n 
0 

Here g is an ordinary tensor whose properties are determined by the structure of an in- 

homogeneous medium, 1 is the unit symmetric tensor of the fourth rank, and the opera- 
tor R describes the nonlocal part of the interaction. 

Since only local interactions are taken into account in the S-approximation, only the 
first member should be retained in the operator R . Consequently, the solution of the 

problem has the following form in place of (1.12) and (1.14) 

e = A, (e), h, = (AA,), A, = (I - gh’)’ ((I - gh’)-l)-l (1.16) 

Introducing the auxiliary tensor b, by means of the equation 

g (A0 + b,) = - 1 (1.17) 

we obtain the following equations for As and A* : 

A, = (A + bc)-‘(A, + b,), A, + bc = <(a + b&Y (I. 18) 

The expressions (1.18) depend on the tensor h,, which is governing for both g and b,. 
Depending on the selection of the comparison field A,, the upper A,+ and lower J,- 

boundaries for A, [7] can hence be obtained, 

2, Let us turn to a computation of the fields and the effective elastic moduli in the 
case of bivortical fields. The stress fields o and o, corresponding to the tensors s = h-1 
and s, = A,-’ satisfy the equations 

La = -_rl, div u = 0, L = Rot s, CT, 1 s = a,” (2.1) 

L,u, = -q, div u, = 0, L, = Rot a,, CT,” Is = ano (2.2) 

where u,is the stress vector with components ukink, and ni is the unit vector of the 

external normal to the surface &’ bounding the medium. The tensor .s* defines the mean 
stress by using the equation 

L, <a> = - q, div <u> = 0, L, = Rot s*, <a,,> 1s = 0,” (2.3) 

As for (1.6), we have for the case q = 0 

<u>=u,=u,, q=o 
Let us write the solution (2.1) in the form (1. 9). For this, we introduce the Green’s ten- 
sor 2 of the operator L, from (2.2), which satisfies the equation [I] 
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L$ = -80, div 2 = 0, 8O = -Rot Rot 5, 2, 1 +cj = 0 
A”T; = -4, 5 f s = 0 

where 8’ is the unit operator in the subspace of bivortical tensors, A is the Laplace OF- 
rator, and the tensor components 2, equal Zlifknl. Then, as for (1.7) we obtain an 
equation from (2.1) and (2.2) 

L&r’ = - L’a, div o’ = 0, a,’ 1 s = 0 

which yields 
CT * a, + Ps’o, P = 2 * Rot 0.4) 

Solving (2.4) for (T, we find 

CI = &3C, ZI = (I - Ps’)-i = j&s’)” 
0 

Hence, after eliminating the field a,, we find the connection between (I and <a> in 
the form 

0 = B (CT), B = b (b)-l = +‘s’)” (2.5) 

The solution (2.5) permits finding the tensor of the effective compliances a+ in the form 

a* = <SW, (B) = I, {E) = S*<CT) (2.6) 

In the S-approximation, the field (3 and the effective compliances a* satisfy the rela- 
tionships 

c I= B*<o>, a* = (sB,), B, =;i (I - z.s’>-*((I - id)-I>-1 &7) 

where the tensor .z is defined as follows: 

(Rot*)~ 2, = ~60, z = z, - z, (2.8) 

The tensors 8, and S* can be simplified by using an auxiliary tensor a, introduced ac- 

cording to the equation 
2 (a, + a,) = - I (2.9) 

Using (2.9), we obtain equations for B, and s* from (2.8) 

B, = (a + a,Y (a* + a,), a* + a* = <(a + &YY (2.10) 

Exactly as in the case of potential fields, the solution of the problem for the bivortieal 

fields in the ~-approxima~on will depend on the parameter a, of the comparison body, 

We obtain the upper s+ and lower s boundary of the field se [?I from (2.10) depending 

on the choice of the comparison field s,. 

3. Let US show that the solutions (1.12) and (1.4) for the potential fields are equiva- 
lent to the solutions (2.5) and (2.6) for the bivortical fields, 

We first prove that the Green’s tensor 2 which has the form Cll’ 

z = 1L$ + def G * d\v h, 1 Rot 5 * (3.X) 

satisfies the relationship 
P = - A, - h,Qh, (3.2) 

where the definitions (1.9) and (2.4) have been taken into account. Indeed, theequation 

Z * Rot A, [I + def G * div h,f Rot Rot 5 * 

together with the identity [l] 
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Aa =Rot Rot + def n, zc = (28 - grad div) div 
and the equation 

G * div h, def = - I 

obtained from (1.4), yields 

P=h,RotRot c* +31,defG*divAc(Aa-defn) C* = 
hc Rot Rot 5 * + h, def G * div &A*5 * -+ A, (A”) - 
Rot Rot) c * = h, (I + Q&) Aa * 

Hence,(S. 2) obviously results (because of the equation A’l; = - 6) . Using (3.2), we 

find for the operator b in (2.5) 

b-I= I - PS’ = x,s -+ h,Q hcs’ 
Hence, after substituting h,s’ = - h’s and taking account of (1.30) we have 

b-l = kc (I - Qk’) s, b = has, (3.3) 

The relationship (3.3) interrelating the operators a and b also permits establishment of 

a connection between the operators A and B as well. Substituting (3.3) into (2.5), we 

obtain B = hAh,-’ (3.4) 
Here the definitions (1.12) and (1.14) of the operator A and the tensor h*have been 
taken into account. 

We now find the connection between h,, obtained by using (1.14), and s*, computed 

according to (2.6). For this, we substitute (3.4) into (2.6), which yields (since <A>= 1) 

se = <sB) = (Ah,-l> = h,” (3.5) 

Therefore, the tensors of the effective elastic moduli agree in both cases and are inde- 

pendent of the nature of the fields being considered. According to (2.5), (3.4) and (3.5), 

we write for the strain field e 
E = sB(o) = sBh,(e) = A(e) (3.6) 

which agrees with (1.12). However, despite the fact that the operator A in (1.12) and 

(3.6) is the same, the strains E. computed by means of these formulas are distinct, This 
is explained by the fact that the strain tensor (E> in (1.12) and (3; 6) satisfies different 
equations. In the first case it is found according to (1.5) and in the second by using(2.3) 

and (2.6). The solutions (1.12) and (3.6) agree only in the case cp = 0, q = 0: 

4. Let us consider the solutions (1.17) and (2.10) obtained in the S-approximation 
for the potential and bivortical fields. 

Only the tensors g and Z, defined in terms of the Green’s tensors G, and 2, for an 
inhomogeneous medium according to (1.15) and (2.8) are used in the ~-approximation, 
hence it is expedient first to establish a connection analogous to (3.2) between them, 

It can be shown that all the calculations in Sect. 3, associated with the derivationof(3.2), 
remain valid also in the examination of the operators QOo and P, in 5 is understood 
to be a Green’s function of the operator A8 for an unbounded medium which has the 
form 5 =rl @Jr>. 

Performing the replacements P + P, and Q + Q,,, in (3.2) and taking the singu- 
lar component from both sides of the equality, we write 

p,” = - A, - A, Qca” L (4.1) 
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But the operators QoO” and P,” degenerate, according to (1.15) and (2.8), into the ten- 
sors g and.2 , respectively. Taking account of the definition (1.17) and (2.9) and ex _ 
pressing Qo9a and P, ’ in terms of-the tensors b, and a, 

QCQ" = - (AC + q-r, Pm8 = - (s, +a$ 

we obtain from (4.1) after simple manipulations 

(% + a,)-’ 
which reduces to the relationship 

zzz (h,-1 + &-1)-i 

a& = I, h& = f (4.2) 

because of the equality h,sO = 1. 
Now, let US transform the expression for the tensor s* from (2.10) found in tb.e S-ap- 

proximation, Using (4.2) and the equality As = 1, we obtain from (2.10) and (1.18) 
s* + a, = <(h-i + b,-‘)-l)-’ = a,<l - b, (h + b,)-r>-1 5= (4.3) 

a, Ir - b, (a* + b,)-rf-r = A,-* + a, 
Therefore, the relationship (3.5) is also satisfied in the ,.‘$ - approximation, however, un- 
der the additional condition (4.2). 

Let us transform the tensor B,. It is seen that by taking account of (4.2) and (4.3)) 
the tensors B, from (2.10) and A, from (1.18) satisfy the equality 

B, = hA,h,- 1 (4.4) 

Substituting (4.4) into (2.7), we find for the strains 

E = sB,<a) = A,A*-lh,<e> = 4+> (4.5) 
This establishes the equivalence of computing the potential (1.16) and the bivortical 
(4.5) fields in the &‘-approximation. However, as in the case of the exact solutions(see 
Sect. 3), this does not mean equality of the field (1.16) to field (4.5). 

In conclusion, let us note that using the mean values <a> and <s> as h, and S, does 
not satisfy the relationship (4.2), and therefore, does not Iead to (4.3) - (4.5). 

Both computation schemes lead to identical results for both the tensor of the effective 
elastic moduli and for the fields in the solution of (1.1) and (1.2) without right sides, 
i,e.,for f =O and ri =O, 
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